.....

(Day 2) Tuesday, July 22, 2025

8:30-8:45	(Day 2) Tuesday, July 22, 2025					
8:45-9:30	Room A: Plenary Lecture 1 Reynolds analogy in wall bounded turbulence, Nicholas Hutchins					
):30-10:15	Room A: Plenary Lecture 2 Turbulence enhancement using tumble flow in direct-injection spark-ignition (DISI) engines, Choongsik Bae					
0:15-10:35						
	Room A	Room B	Room C	Room D		
0:35-10:55	DNS FOR TURBULENT FLOWS (1) Direct numerical simulation of turbulent transition on	ROUGH WALL TURBULENCE	TWO-/MULTI-PHASE FLOWS (1) Settling velocity of elongated particles in a quiescent	ENVIRONMENTAL AND GEOPHYSICAL FLOWS (1) Direct Lagrangian tracking simulation of		
,	a swept flat plate with the effects of distributed roughness height and wavelength *Kotaro Minamio, Kosuke Nakagawa, Ryo Araki, Takahiro Shida. Takahiro Tsukahara	transfer in turbulent flow over rough surfaces *Himani Garg, Jens Klingmann, Karl Johan Nogenmyr, Ambrosio Pedreno Marin, Alexander Stroh, Yusuke	Fluid: the effect of volume fraction *Lihao Zhao, Xinyu Jiang, Chunxiao Xu	*Masaya Iwashima, Ryo Onishi		
10:55–11:15	Direct numerical simulations of turbulent flows in triply periodic minimal surface porous media	Kuwata Relaminarization of turbulent flow in a spanwise rotating channel roughened with circular-arc ribs at high rotation numbers *Wei-Jian Xiong, Jinglei Xu, Bing-Chen Wang	Improvement of a particle-eddy interaction model for predicting the dispersion of breath-induced particles *Ege Batmaz, Florian Webner, Daniel Schmeling, Claus Wagner	Modeling of a heavy gas turbulent dispersion in complex urban environments *Sasa Kenjeres, Daoming Liu		
1:15-11:35	Relaminarization of turbulent puffs in pipe flow *Alex Yakhot, Basheer Ahmad Khan, Shai Arogeti	Experimental study of Reynolds number effects on the turbulent flow in a ribbed square duct *JH. Ge, J. XU, BC. Wang	Joint Reynolds number and mass loading influence on secondary motion in a particle-laden pipe flow: an eddy-resolving RANS study *Xiaoyu Wang, Jeanette Hussong, Suad Jakirlic	Towards high-fidelity simulation of urban flows: Mean-flow statistics *Ming Teng, Josep Duro, Naim Munoz, Ernest Mestre Jordi Muela, Oriol Lehmkuhl, Ivette Rodriguez		
11:35–11:55	forces	Ultimate and super-ultimate states of turbulent thermal convection between rod-mounted horizontal walls	Atila PS Freire, Cristian MP Rosero, *Juliana BR	Numerical simulation of the impact of different tree types on air pollution from vehicle emissions in urba street canyons under chemical reactions		
	*Menglei Wang, Takahiro Hayashi, Hiroya Mamori, Takeshi Miyazaki	*Yichen Zhang, Shingo Motoki, Genta Kawahara	Loureiro	*Alibek Issakhov, Temirlan Takkozha, Aidana Sabyrkulova, Aizhan Abylkassymova		
11:55–12:15	Direct numerical simulation of the interaction of turbulent spots in the supersonic boundary layer on a parabolic profile *Ivan Egorov, Ivan Ilyukhin	Momentum and heat transfer in turbulent channels with drag-increasing riblets *Stefano Cipelli, Natalie Rapp, Bettina Frohnapfel, Davide Gatti	On the fluid dynamics of toilet plume bioaerosols: An experimental study based on flow visualization *Fernando López Peña, Anne Gosset, Marcos Lema	Energy cascading in urban flows under adiabatic and isothermal conditions: Insights from 2-m large eddy simulations *Rakesh Teja Konduru, Rahul Bale, Makoto Tsubokur		
12:15-13:35		Lu	inch			
			Room C	Room D		
13:35-13:55	DNS of turbulent FLOWS (2) DNS of turbulent heat transfer in a channel uniformly heated by thin-film wall heater for the validation of a ML-based denoising technique *Yutaka Oda, Taisei Furukawa, Ryo Matsumoto, Ryo		TWO-/MULTI-PHASE FLOWS (2) Microstructured falling film reactors enhance hydrogen absorption and mixing: NMR/MRI experiments *Georges Saliba, Jan G. Korvink, Jürgen J. Brandner	FLOW AND HEAT TRANSFER CONTROL (1) Prediction of drag reduction effect in pulsating turbulent pipe flow by deep learning with generalization capability *Sota Kumazawa, Tomohiro Nimura, Akira Murata,		
13:55–14:15	Nakavama. Rvosuke Matsumoto Recent advances in the understanding of laminar- turbulent transition in rod bundles *Elia Merzari, Carolina Bourdot Dutra, Luiz Aldeia	β-Variational autoencoder and transformer-based data-driven modeling of near-wall turbulence *Niccolò Tonioni, Mohammad Umair, Lionel Agostini,	Experimental study on evaporation-driven flow, evaporation rate of single evaporation multi- component sessile droplet	Kaoru Iwamoto Possibility of heat transfer enhancement by applyin pulsation to a pipe flow under non-reverse flow conditions		
14:15–14:35	Machada DNS study of axial-rotation effects on the transport of Reynolds stresses in a circular pipe flow *Zhao-Ping Zhang, Bing-Chen Wang	Eranck Kehervé. Laurent Cordier. Ricardo Vinuesa Twin experiments for data assimilation of cavitating flow around a hydrofoil assuming PIV data as the pseudo-measurement data Shungo Okamura. *Kie Okabavashi	*Haa Conz. Kazuvoshi Fushinohu. Tatsuva Kawazuchi Study on the morphological characteristics of flashing spray from a single-hole nozzle *Zhaorui Guo, Minhyeok Lee, Yuji Suzuki	*Haiime Nakamura. Yuki Funami. Shunsuke Yamada Effect of plane wave ultrasound acoustic streaming in a turbulent boundary layer *Takumi Watanabe, Yoshitsugu Naka		
14:35–14:55	DNS investigation of elementary processes in turbulent channel flow of viscoplastic fluid *Takashi Ohta, Daisuke Michisaka	Junio Charlmut, Inte Ontability Data-driven model of large-scale eddies in the energy-containing range in turbulence *Satoshi Matsumoto, Masanobu Inubushi, Susumu Goto	Effects of refrigerant charge on ice formation distribution on the evaporator surface in a vapor compression refrigeration cycle *Bruno Marangolo. Jeonardo Bernardini. Alekos	Dissimilarity between momentum and heat transfer in a turbulent plane Couette flow controlled using streamwise traveling wave *Yusuke Nahae. Hiroshi Gotoda. Koji Fukagata		
14:55–15:15	Numerical simulation of nonlinear stage of laminar- turbulent transition under action of controlled disturbances *Natalia Palchekovskaya	Optimization of a bare turbulence model for fuel rod bundles based on PINN Chen Zhang, Zhenyang Sun, *Hongyang Wei, Sichao Tan, Ruifeng Tian		Phase-averaged turbulence statistics and flow field highly drag-reduced pulsating turbulent pipe flow *Aoba Katakai, Tomohiro Nimura, Akira Murata, Kaoru Iwamoto		
15:15-15:25		Short	t break			
	Room A	Room B	Room C	Room D		
15:25-15:45	RANS (1) From transitionally to fully rough flow: Validation of	AI-DRIVEN APPROACHES IN TURBULENCE (2) A novel wall model for wall-bounded turbulent flow based on deep-neural-network discriminator	UNSTEADY FLOWS AND BODY FORCE EFFECTS (1) Unsteady characteristics of turbulent flow separation induced by a fence with a splitter plate in	FLOW AND HEAT TRANSFER CONTROL (2) Enhanced turbulent heat transfer by Kelvin- Helmholtz rollers over longitudinal rib roughness		
	the v²-f-k-ω model *Ata Sojoudi, Donald J Bergstrom	*Ming Liu, Zhuchen Liu, Chisachi Kato, Yosuke	uniform flow * Jinhao Kang, Xingiun Fang, Mark F. Tachie	*Yusuke Kuwata		
15:45–16:05	Tailored numerical grid approach in scale-resolving turbulence models *Fettah Aldudak, Holger Foysi	Al modeling of wall heat flux in turbulent flame wall interaction under pressure-rising combustion conditions	Numerical investigation of quad-cyclorotor UAV at hover using large-eddy simulation *Manabu Saito, Ryoichi Kurose	Shape parameter effect on turbulence and passive scalar transport characteristics in deployable pipe flows		
16:05–16:25	Machine learning for separated turbulent flow simulations: Classical versus dynamic methods *Stefan Heinz	*Yuto Nozuchi. Ye Wang. Mamoru Tanahashi Refractive index determination of dynamic droplets in a flow by analyzing light scattering signals with a machine learning approach *Walter Schäfer	Study on the influence of MHD interaction on turbulent Taylor-Couette flow with end walls *Hiromichi Kobayashi, Takahiro Hasebe, Katsumi Namba, Takayasu Fujino, Hidemasa Takana	*Zen Fukuda. Yoshitsueu Naka. Sachiko Ishida Numerical simulations of aerodynamic characteristi of an elliptical wing in uniform flow far from or near to moving ground *Heizo Asai, Izdihar Hilal Amur Al Hajri, Katsuya Hiratı		
16:25–16:45	Turbulence models assessment in a supersonic separator Ramyro Macedo, Rodrigo dos Anjos, *Tania Klein	Numerical analysis and AI prediction of heat removal using PCM attached to PV panel Saleem Raza, *Ik-Tae Im, Hamada M Abdelmotalib	Stability analysis of hypersonic streamwise corner boundary layer *Xin Liang, Dongxiao Xu, Youcheng Xi, Song Fu	Integral method of friction decomposition for turbulent flow over rough walls *Wen Zhang, Xiang Yang, Peng Chen, Minping Wan		
16:45-17:05		Coffe	e break			
	Room A RANS (2)	Room B COMBUSTION AND REACTING FLOWS	Room C UNSTEADY FLOWS AND BODY FORCE EFFECTS (2)	Room D FLOW AND HEAT TRANSFER CONTROL (3)		
7:05–17:25	Improved k- ω - γ -A _r transition model considering	Effect of near-wall filam quenching on the wall heat flux in a reacting turbulent channel flow *Ye Wang, Mamoru Tanahashi	Instantaneous and long-term averaged flow and active scalars features in turbulent double-diffusive convection * * Soar Kenieres. Rong Roovers	Turbulent heat and momentum transfer in pipe flow with deep axial grooves *Shingo Motoki, Sena Hattori, Hinata Kurihara, Genta Kawahara		
7:25–17:45	Assessment of an advanced near-wall treatment for URANS computations of natural circulation loops *Constantinos Katsamis, Dean Wilson, Timothy Craft, Hector lacovides	Numerical investigation of Rich-MILD-Quench- LeanAmmonia combustion in a dual-stage burner with cyclonic and quad JICF configuration *Donato Cecere, Matteo Cimini, Giovanni Battista	Application of CFD analysis for the detection of buffeting *Daniel Palma, Lorenzo Pirillo, Giacomo Della Posta, Matteo Bernardini, Manuela Moretta, Fulvio Stella	Effect of cross-sectional shape of 3-dimensional riblets upon drag reduction in turbulent channel flo *Taiki Watanabe, Tomohiro Nimura, Akira Murata, Kaoru Iwamoto		
7:45–18:05	Analytical wall function for improved prediction of industrial heat transfer *Dean R Wilson, Constantinos Katsamis, Tim Craft, Hector lacovides. Fhimen Ivamabo	Ariemma, Eugenia Giacomazzi Predictive modelling of ammonia combustion systems: Coupled LES-CMC and ISRN approach *B Harikrishnan, Epaminondas Mastorakos	Modeling of switching polygons in a bucket with a rotating bottom Shay David Amar, Alex Rashkovan, *Gennady Ziskind	Dimpling, turbulent eddy production, and improvement of aerodynamic performance *Peter Vorobieff, Sal Rodriguez, Ahmed Mohamed		
18:05–18:25	Numerical simulation on single-stage transonic axial compressor *Xinzui Wang, Cheng Tian, Song Fu	Large eddy simulation of the HyShot II combustor *Marco Fratini, Giacomo Della Posta, Matteo Bernardini	Transient and steady-state performance of 0.25mm- thick novel ultra-thin vapor chambers for mobile device	Experimental studies of infrasonically induced heat transfer in a resonant cavity *Lei Wang, Emrik Strandh		

(Day 3) Wednesday, July 23, 2025

8:30-9:15

Room A: Plenary Lecture 3 Prediction of turbulent flows: recent advances in low-order modeling of compressible and rough wall flows, Beverley J. McKeon Room A: Plenary Lecture 4 Heat and mass transfer measurement using thin film sensors, Osamu Nakabeppu 9:15-10:00

10:00-10:20	0-10:20 Coffee break			
	Room A DNS FOR TURBULENT HEAT TRANSFER	Room B TWO-/MULTI-PHASE FLOWS (3)	Room C ENVIRONMENTAL AND GEOPHYSICAL FLOWS (2)	Room D HEAT EXCHANGERS AND HEAT PUMPS
10:20–10:40	Direct numerical simulation of turbulent heat convection in elliptical pipes of varying aspect ratios *Taylor C. Opperman, Bing-Chen Wang	Scaling formation induced by an orifice under turbulent flow regime *Atila PS Freire, Paulo HS Silva, Cristian MP Rosero, Juliana BL Joureiro	Simulation and theoretical study of turbulence-wave interaction in Langmuir circulation Anging Xuan, *Lian Shen	Thermal performance of additively manufactured heat exchangers based on cellular structures *Yueliang Zhang, Xiyuan Su, Yu Rao, Xintong Wang, Kirttayath Yeranee
10:40–11:00	DNS study of turbulent heat transfer through a concentric annular square duct *Taylor C. Opperman, Mark S. Tachie, Bing-Chen Wang	The effects of compliant walls on turbulent heat transfer *Morie Koseki, Marco Edoardo Rosti	Experimental study of turbulent flow above a fence with a splitter plate in uniform flow at Re = 2700 *Jinhao Kang, Xingjun Fang, Mark F. Tachie	Numerical study on the flow and heat transfer mechanisms of oblong dimpled plate heat exchangers * liaiun Xie, Yu Rao, Yueliang Zhang
11:00–11:20	DNS study of turbulent heat transfer in a square duct with longitudinal ribs Mark Sedem Tachie, *Taylor Cole Opperman, Bing- Chen Wang	Influence of the properties of the elasticity modulus on the hydrodynamic characteristics of the flow in the nasopharynx *Alibek Issakhov, Aidana Sabyrkulova, Aizhan Abvlkassmova	On nuclear dynamics in string-based thundercloud plasmas *Geert Cornelis Dijkhuis	Effect of oblique angle and wave amplitude on heat transfer performance of v-shaped pulsed fin heat exchanger *Tianyang Fang, Kenichi Morimoto, Yuta Tsujimoto, Nohuki Daimon, Yuki Shiraiwa. Yuii Suzuki
11:20–11:40	Improved heat transfer performance of multiple impinging jets with individually controlled intermittent jets based on DNS *Ippei Shibata, Koichi Tsujimoto, Toshitake Ando, Mamoru Takahashi	Numerical study of two-phase flow in an aeroengine bearing chamber using a coupled discrete phase and Eulerian wall film model Eric Boudreau, Baafour Nyantekyi-Kwakye, *Dominic Grouty. Losto Diasady. Ivan. Sidorovich Paradiso	Numerical study of wake turbulence behind fractal- trees *Yuwei Yin, Ryo Onishi, Seiya Watanabe, Igor Igorevich Segrovets, Kouji Nagata, Takayuki Aoki	Development of a loop heat pipe for top heat mode *Atsushi Tsujimori, Shinnosuke Hashimoto, Yui Sato, Ryosei Sasagawa
11:40-12:00	Effects of conjugate heat transfer on the thermal properties of turbulent flow over rough walls *Alexander Stroh, Francesco Secchi, Himani Garg	(Poster Presentation) Experimental study and development of a prediction model for cross- sectional void fraction of water-steam two-phase flow in vertical helical tubes *Xiaoyi Wu, Fucheng Chang, Jiacheng Lou, Qisong Yang, Xi Li, Zhibin Li, Huixiang Li	A novel VAWT design for urban wind utilization *Sixiong Ge, Yan Yan, Chengsheng Jiang, Jie Xu, Jiahuan Cui	

12:00-13:20		Lu	inch	
	Room A NUMERICAL SIMULATION OF MULTIPHASE FLOWS	Room B TWO-/MULTI-PHASE FLOWS (4)	Room C GENERAL HEAT AND MASS TRANSFER	Room D COMPRESSIBLE AND HIGH-SPEED FLOWS (1)
13:20-13:40	DNS of turbulent flow of liquid hydrogen with wall boiling *Tatsuya Yonemura, Takashi Ohta	Combined influence of surface orientation and roughness on pool boiling heat transfer performance *Gyanesh Kumar, Umesh Madanan	Molecular dynamics study on the effects of cuboid	Commensional simulations on aerodynamic heating and flow characteristics of hypersonic Apollo-shaped capsule induced by boundary layer trip *Kento Inokuma, Aiko Yakeno, Flavien Colusso, Shuto Yatsuvanati. Hidevuki Tanno
13:40–14:00	The effect of turbulence on interfacial heat and mass transfer in condensing bubbly flow *Yixiang Liao	Heat transfer coefficient of two-phase flow bolling of R455A in mini-channel *Hoang Ngoc Hieu, Jong Taek Oh, Jong Kyu Kim	Pushing the boundaries of dropwise condensation via spontaneous shedding of microdroplets *Xiao Yan, Rong Chen, Qian Fu, Xun Zhu, Qiang Liao	Effect of fuel injections at different locations along the length of the combustor *Prathamesh Rajesh Chine, Yogeshkumar Velari, P.A. Ramakrishna
14:00–14:20	Multi-physics simulation of ice crystal icing considering ice erosion phenomenon Wakana Tatsuta, Koji Fukudome, Soichirou Fujimura, *Makoto Yamamoto	Measurements of temperature and boiling heat transfer of R1336mzz(E) in a horizontal circular tube Akihiro Kasai, *Shunsuke Yamada, Yuki Funami, Hajime Nakamura	Experimental investigation on heat transfer and pressure drops across a lattice structure *Leonardo Bernardini, Alekos Ioannis Garivalis, Bruno Marangolo, Mauro Mameli, Sauro Filippeschi, Paolo Di Marco	Hybrid RANS/LES simulations on the turbulence and loss mechanism of different trailing edges for highly- loaded turbine cascade *Weihang Ding, Xinrong Su, Xin Yuan
14:20-14:40	Pressure-equilibrium semi-implicit algorithm for multi-component real fluid flows *Ibuki Tsutsumi, Sho Wada, Abhishek Lakshman Pillai, Ryoichi Kurose	SDMS-PLIF thermographic measurements of nucleate flow boiling in a vertical square minichannel Zengchao Chen, Aleksei S. Lobasov, Surya Narayan, Konstantin S. Pervunin, *Christos N. Markides	Hybrid CHT-LES/RANS investigation of the tangential effusion cooling for a combustor liner *Xuanwu Chen, Qinghua Zeng, Bing Wang, Pengfu Xie	Numerical studies of flow dynamics and control for partially ioinzed plasma *Zhigang Pu, Kun Xu
14:40–15:00	Production and transport of turbulent energy in magnetised jet flows. *Nick Williams, Alessandro De Rosis, Alex Skillen	Numerical study on the effect of water outlet pressure on the performance of a horizontal gravity separator for three-phase mixtures *Hong-Cheol Shin, Hee-La Jang, Inju Hwang, Hwenneok Sen	Thermal analysis of the surface/subsurface coupled evaporation for an energetic system *Thomas Doury, Pierre Horgue, Romain Guibert, Jean Raymond, Gerald Debenest	Accelerated discontinuous Galerkin solver for two- dimensional Navier-Stokes equations based on the p multigrid method *Zhehao Sheng, Yan Yan, Jiahuan Cui

15:00-15:20	Coffee break			
	Room A TURBULENCE IN COMPLEX STRUCTURE	Room B TWO-/MULTI-PHASE FLOWS (5)	Room C SCALAR TRANSPORT IN CONVECTION (1)	Room D NUMERICAL HEAT TRANSFER IN INDUSTRIAL APPLICATIONS (1)
15:20–15:40	Investigation of counter-gradient transport structures in stably stratified homogeneous shear turbulence *Zhiming Lu, De Li	Phase change and heat transfer at the mesoscale Mirko Gallo, Leonardo Caciolla, Matteo Teodori, *Carlo Massimo Casciola	On the temperature and pressure footprints in high- Reynolds-number turbulent boundary layers *Mayu Kamada, Sayoko Mayama, Makoto Iwasaki, Kentaro Kato, Yoshitsugu Naka, Ayumu Inasawa, Masaharu Matsubara, Shumpei Hara	On the CFD modelling of natural convection in RVACS: analysis of DNS and RANS simulations *Jundi He, Shuisheng He, Graham Macpherson, Dillon Shaver, Elia Merzari, Wei Wang, Bo Liu, Greg Cartland- Glover, Ollie Lim, Tim Houghton, Constantinos Katsamis, Chris Sigournay, Ioannis Kyritsopoulos
15:40–16:00	Experimental investigation of porous media turbulence *Arnaud Mure d'Alexis, Rémi Roncen, Ludovic Ambrosiani, David Donjat, Olivier Léon, Fabien Mery	Dynamic tuning of phase change composites via the electric field to control the heating wall temperature Boyu Li, Zirui Xu, *Jian Wu	Spectral dissimilarity between momentum and heat transfers in a plane Couette turbulence *Kengo Suetsugu, Takahiro Tsukahara, Takuya Kawata	Investigating the Reynolds analogy for triply periodic minimal surfaces in low-Reynolds flow regime Laura Savoldi, Antonio Cammi, Eleonora Gajetti, *Luca Marocco
16:00–16:20	Flow patterns and heat transfer in a channel with a plasma actuator in burst mode by CFD *Akihiko Mitsuishi, Hiroyuki Nishida, Kaoru Iwamoto	Pressure drop of two-phase flow boiling of R455A in mini-channel *Hoang Ngoc Hieu, Jong Taek Oh, Jong Kyu Kim	Spectral analysis on turbulent diffusion of passive scalar in a turbulent channel flow *Yusuke Ueki, Hiroya Mamori, Takuya Kawata	Effects of nozzle geometry on turbulent characteristics of 3D offset synthetic jets *Akili Elizabeth Cyrus, Keziah Naa Densua Hammond, Fhenezer Ekwar Escel
16:20–16:40	Transitional RANS and HRLM simulations for DU-91- W2-250 at high Reynolds number *Haitian Lin, Siya Jiang, Song Fu	Modeling fuel effects on high-pressure transcritical mixing of Sustainable Aviation Fuels *Marco Maria Molinari, Davide Cavalieri, Leandro Lucchese, Jacopo Liberatori, Matteo Blandino, Pietro Paolo Ciortoli	Heat transfer and flow modulation of turbulent plane Poiseuille flow by thermal stratification at low Reynolds number *Koji Fukudome, Takahiro Tsukahara, Hiroya Mamori, Makoto Yamamoto	
17:30-23:00	bus transfer ~ Banquet			

(Day 4) Thursday, July 24, 2025

8:30-9:15

9:15-10:00

Room A: Plenary Lecture 5 3D Lagrangian aspects of bubbly flows: measurement, turbulence and collective behavior, Dirk Lucas Room A: Plenary Lecture 6 Modeling and design optimization of a supersonic turbomachinery-integrated solar reactor for hydrogen production, Nesrin Özalp

10:00-10:20	Coffee break				
	Room A COMBINED LES/RANS	Room B COMPRESSIBLE AND HIGH-SPEED FLOWS (2)	Room C SCALAR TRANSPORT IN CONVECTION (2)	Room D NUMERICAL HEAT TRANSFER IN INDUSTRIAL APPLICATIONS (2)	
10:20–10:40	A complete formulation of the resolution parameters for the PANS model: from RANS to DNS *Branislav Basara, Zoran Pavlovic, Sharath Girimaji	Controlled dissipative small-scale motions in turbulent separation cells Curtis J Peterson, *Bojan Vukasinovic, Ari Glezer	Data-driven modeling of turbulent heat transfer over three-dimensional irregular rough surfaces *Kuga Terada, Yuki Adachi, Na Donggeon, Yusuke Kuwata. Kazuhiko Suga	Numerical research on flow structures and heat transfer in pulsed jet impingement with crossflow *Yihui Xiong, Yu Rao	
10:40–11:00	Physically consistent Reynolds-averaged Navier– Stokes equations with large eddy simulation capability *Stefan Heinz, Adeyemi Fagbade	High-fidelity numerical simulation of conjugate heat transfer in shock wave/boundary layer interactions *Giacomo Della Posta, Matteo Bernardini	Experimental investigation of turbulent heat transfer over roughness elements *Shilpa Vijay, Beverley McKeon	Numerical investigations on the leakage flow and heat transfer characteristics of brush seal with the deflector plate Hailong Qiu, Pengfei Song, Jie Qu, Bo Bai, Zhigang Li, * Iun II	
11:00–11:20	Hybrid RANS-LES simulation of aerosol dispersion and evaporation with diffusion-inertia model *Johann Miranda-Fuentes, Christophe Friess, Jérome J acob	Analysis of normal shock wave instability in transonic moist air flow within convergent-divergent nozzles using experimental and numerical approach *Slawomir Dvkas. Miroskav Maikut. Krystian Smokka	Experimental measurement of the horizontal and vertical Nusselt numbers in turbulent thermal convection using quantitative shadowgraphy *Lu Zhang, Jing Dong, Ke-Oing Xia	Pre-stall prediction of a transonic engine compressor based on URANS and hybrid RANS/LES methodology *Julian Alexander Scheibel, Marcel Stößel, Dragan Kozulovic	
11:20–11:40	Evaluation of hybrid RANS/LES switching functions for natural convection: a study of turbulent transition *loannis Kyritsopoulos, Alistair Revell, Sofiane Benhamadouche, Vladimir Duffal	Numerical study of cooling microjets in hypersonic shock wave turbulent boundary layer interaction Zhenyuan Tang, Xueying Li, *Jing Ren	High-fidelity simulation of developing mixed convection in a buoyancy-aided vertical pipe flow Rodrigo Vicente Cruz, *Cédric Flageul, Eric Lamballais, Juan C. Uribe, Vladimir Duffal, Erwan Le Coupanec, Sofiane Renhamadouche	Large eddy simulation and analysis of inclined film cooling jet flow at the turbine blade leading edge *Yifan Yang, Kexin Hu, Xinrong Su, Xin Yuan	
11:40-12:00	A modelling strategy for log-layer mismatch in channel flows *Puneeth Bikkanahally, Remi Manceau	Numerical investigation of supersonic base flow using high-order finite differencing method *Wenchang Wu, Xingsi Han	Effects of settling, thermal inertial particles and bubbles on the hydrodynamic stability of the Rayleigh-Bénard system Silvia C Hirata, *Enrico Calzavarini, Saad Raza	Numerical modeling of a high-temperature thermochemical heat storage reactor *Tianchao Xie, Jaimy Gebbeken, Zhen Cao, Iliana Doliou, Kyriakos Fotiadis, Martin Roeb, Christos Agrafiotis, George Karagiannakis, Nickolas Vlachos, Abhichek Sinah	
12:00-12:20	Adaptive turbulence simulation method for integrating outer and inner aerothermal flows and heat transfer through turbine blades *Tianvi Wang. Yimin Xuan		Influence of wall vorticity layer on wall-temperature distribution in turbulent boundary layers *Shumpei Hara	Numerical analysis of the application of high- concentration alternative solutions in the PRO process * *Piotr tanka. Juliusz Wachnicki	
12:20-13:40		Lu	nch		
	Room A LES	Room B TWO-/MULTI-PHASE FLOWS (6)	Room C APPLICATIONS IN ENERGY, PROCESS, AND ENVIRONMENT (1)	Room D NUMERICAL HEAT TRANSFER IN INDUSTRIAL APPLICATIONS (3)	
13:40–14:00	On the role of energy spectra in high-wavenumber region for the mean-velocity prediction in large eddy simulation *Ken-ichi Abe	Experimental study on enhancement of heat transfer by spray cooling of leaf vein surface with surfactant *Rui Zhou, Hua Chen, Wen-long Cheng	Internal waste heat recovery in port-fuel hydrogen split cycle engine with liquid nitrogen compression *Angad Panesar, Elisa Wylie, Robert Morgan	Numerical analysis on UTVC/plate-fin heatsink modules with an axial fan *Ting-Yun Kuo, Shwin-Chung Wong, Chi-Chao Hsu, Chung-Yen I u	
14:00–14:20	Scale-resolving computational study of flow dynamics in fuel cells: insights into laminarization phenomena and turbulence anisotropy *Louis Krüzer. Jeanette Hussong. Suad Jakirlic	A novel loop heat pipe evaporator for multi-side cooling of a heat source *Nguyen Phan, Tuan Anh Nguyen, Huy Duc Bui, Bach Xuan Næuven. Hosei Nagano	Enhancing thermal and physical properties of composite phase change materials using biochar *Kaihan Xie, Wenke Zhao, Yaning Zhang, Bingxi Li	Twilight zone quasidiffuse radiative transfer 3D modeling Vladimir Pavlovich Budak, Pavel Aleksandrovich Smirnov, *Sergev Anatolievich Doleushin	
14:20–14:40	Plasma-based active flow control for heave-pitch motions of a NACA 0012 airfoil Dereje Arijamo Dolla, *Chin-Cheng Wang	Study of the header configurations on the flow and stress distribution of SCO2 in parallel channels Shuo Yang, Hongyan Fan, *Jian Wu	Entropy generation due to air distribution in rooms *Zhenhua Xia, Mats Sandberg, Yuguo Li	Impact of operating Parameters on the permeate flux of hollow fiber membrane distillation systems Ahmed Gweda, *Mohammed A Antar	
14:40-15:00	High-fidelity simulation of developing mixed convection in a vertical tube bundle configuration *Rodrigo Vicente Cruz, Cédric Flageul, Eric Lamballais, Juan C. Uribe Torres, Vladimir Duffal, Erwan Le Courance: Sofiane Renhamadouche	Experimental investigation on the heat transfer of supercritical carbon dioxide in a horizontal heating tube Yu-Cheng Pan, Lei Wang, * Jin-Der Lee, Shao-Wen Chen	Performance evaluation of small wind turbines under large turbine wake effects in a wind farm *Yanting Lin, Yun-Jane Chung, Shan-Yuan Wang, Huei Chu Weng		
15:00-15:20	Couranee Soltane Benhamadouche Numerical Study on the interaction of multiple subsequent jets in a subsonic cross-flow *Leandro Lucchese, Edoardo Flavio Laurora, Davide Cavalieri, Jacopo Liberatori, Riccardo Malpica Galassi, Giuliano De Stefano. Pietro Ciottoli	Investigation of the semi-mechanistic wall boiling model developed in ANSYS FLUENT Dylan Logan, *Dominic Groulx, Mohammad Saeedi, Ivan Sidorovich Paradiso, David Koo	Investigation of the heat transfer coefficient correlations of a structured monolith as solar receiver with computational and lab data Aysha Melhim, *Konstantinos E Kakosimos, Athanasias G Konstandonoulos	Heat transfer analysis of a bayonet tube under normal and concentrated heat flux conditions Abhishek Raj, Amit Raj, Mrityunjay Sinha, *Ram Sharma	

(Day 5) Friday, July 25, 2025

	Room A DNS FOR TURBULENT FLOWS (3)	Room B BIOLOGICAL AND BIOMEDICAL FLOWS	Room C SCALAR TRANSPORT IN CONVECTION (3)	Room D NUMERICAL HEAT TRANSFER IN INDUSTRIAL APPLICATIONS (4)
8:30-8:50	High-order compact gas-kinetic scheme for turbulence simulation *Fengxiang Zhao, Yaqing Yang, Kun Xu	Impact of environmental temperature on aerosol dispersion dynamics during violent expiratory events *Nicolás Catalán, Salvatore Cito, Sylvana Varela, Alexandre Fabregat, Anton Vernet, Jordi Pallarès	Convective heat transfer of immersed heat exchanger storage tank with microencapsulated phase change slurry *Alekos loannis Garivalis, Yuri Scardigli, Dario Groppi, Daniele Testi. Carlo Rattoli	Study on the formation mechanism of pore ice in frozen soil based on LBM *Zongwei Gan, Wenke Zhao, Yaning Zhang, Bingxi Li
8:50-9:10	Advances in the description of a spatially developing incompressible turbulent mixing layer and its self- similarity *Svetlana Poroseva	Enhanced oxygen delivery during pulsatile bi-level ventilation *Seyedmohsen Baghaei Oskouei, Seyyed Hossein Monsefi, Alexander Aloy, Michael Kurz, Robert Kölbl, Margit Göhler Michael Harasek	Experimental investigation on scalar mixing of cross flow over P/D = 1.58 tube bundle using LIF *Yunhao Luo, Xiaoyang Xie, Yifan Zhou, Houjian Zhao,	Numerical investigation of heat source function within a spherical particle under light irradiation *Shen-Ju Sung, Wen-Ken Li
9:10–9:30	Active flow control on a plunging/pitching airfoil using AC-DBD plasma actuators *AbdulGafoor CP, Aniruth Arun, Nagabhushana Rao Vadlamani	Numerical investigation of dynamics of nanoscale DNA-liposome complex under shear flow Lei Kang, *Guohui Hu	Experimental study on the flow and heat transfer characteristics of a parallel natural circulation boiling heat transfer system with a small horizontal inclination angle	Effects of offset height ratio on flow characteristics of a synthetic jet attaching on a wall *Keziah Naa Densua Hammond, Naveed Naeem, Akili Flizaheth Cvrus, Ehenezer Fkow Fseel
9:30–9:50	Universality of velocity statistics in high-Reynolds number wall-bounded flows *Yoshiyuki Tsuji, Yoshinobu Yamamoto, Mre Ono, Noriyuki Furuichi		Investigations on the scale-up of mixed mode forced convection solar dryer Bhanudas B. Takale, Mahesh Dasar, *Ranjit S. Patil	Reynolds number effects on the unsteady wake dynamics of a notchback Ahmed body *Joseph Kwabena Kodie-Ampaw, Hung Thuc Gia Banh, Ana Sofia Garcia Hernandez, Ebenezer Ekow Essel
9:50-10:10	Exploring dissimilarities in momentum and heat transfer over homogenous rough surfaces *Simon Dalpke, Jiasheng Yang, Bettina Frohnapfel, Alexander Stroh		Deposition and convective evaporation of polycaprolactone solution droplet after impacting a smooth surface Alexandra Piskunova, Vladlena Chobotova, Alexander Ashikhmin. *Maxim Piskunov	Comparative assessment of data-free and data- driven eigenspace perturbations for uncertainty quantification in CFD *Shivam Saini, Amit Sachdeva, Nagabhushana Rao Vadiamani. Vinod Kumar
10:10-10:30		Coffe	e break	
	Room A NUMERICAL SIMULATION OF MULTIPHASE FLOWS (2)	Room B APPLICATIONS IN ENERGY, PROCESS, AND ENVIRONMENT (2)	Room C LATTICE BOLTZMANN METHOD	Room D NUMERICAL HEAT TRANSFER IN INDUSTRIAL APPLICATIONS (5)
10:30-10:50	A hybrid CFD/CAA solver for simulating real fluid flows and their noise generation under transcritical and supercritical conditions *Abhishek Lakshman Pillai, Takuto Yamada, Yuya Kawase. Sho Wada. Rwichi Kurose	Effect of density ratio on the film cooling effectiveness across effusion cooled surfaces with various blockage ratios *Omar Deyab Aly, Lesley M Wright, Ibrahim Galal Hassan	A selective frequency damping method for lattice- Boltzmann solvers Jerome JACOB, Samuel CARRE, *Christophe FRIESS	Optimising conjugate transfer in porous structures: The role of flow instabilities and structural defects *Jaimy Gebbeken, Nickolas Vlachos, Wilko Rohlfs, Abhishek Kumar Singh
10:50–11:10	Numerical simulation of spray cooling on heated wall at different temperatures with swirling nozzle *Bingrui Li, Jiayu Liu, Xin Wang, Bingxi Li, Wei Wang	Study on loop heat pipe for traction inverter cooling in electric vehicles *Makoto Kamata, Yuta Shimada, Noriyuki Watanabe, Shinobu Aso, Kazuki Sadakata, Shigeyuki Tanabe, Hosei Nagano	Simulations of turbulent Poiseuille duct flow with lattice Boltzmann method on non-uniform mesh YH. Chiu, BX. Jin, SW. Feng, *Chao-An Lin	Numerical modeling of a Vuilleumier heat pump and validation using CFD reference data *Israa Barakat, Eric Albin, Shihe Xin
11:10–11:30	Numerical simulation study of single bubble flow boiling in microgravity *Xin Wang, Aoqian Deng, Bingrui Li, Bingxi Li, Wei Wang	Direct simulation of multi-scale flow through porous structures in circular pipe and its application to reactor flow investigation *Shun Tamura, Mitsuho Nakakura, Yusaku Matsudaira. Koji Matsuhara	Lattice Boltzmann simulation of pollutant dispersion using Eulerian aerosols models *Jerome Jacob	Turbulence simulation based on gas-kinetic scheme for internal and external flow *Yue Zhang, Kun Xu
11:30–11:50	Effects of mass transfer coefficients on evaporation in a thermosyphon charged with HFE-7100 *Chanyong Lee, Kwon-Yeong Lee	Flow field optimization for HTPEM fuel cells: a comparative study of serpentine-parallel and wavy flow channels *Emanuele D'Alessio, Mahmoud Mohamed Mohamed Abdelkader, Filippo Donato, Giuliano Agati, Domenico Bocello	Enhanced two-phase flow model for phase change with GPU parallel optimization approach *Xiaoyu Wu, Yueming Li, Xian Wang	Effects of perforated baffles on sloshing damping optimization: a CFD approach *Lorenzo Pirillo, Daniel Palma, Benedetta Peroni, Francesca Rossetti, Fulvio Stella, Agostino Neri
11:50–12:10	Turbulent modeling of enhanced pool boiling through sintered particle surface coating *Yusuf Rahmatullah, Tsrong Yi Wen	Impact of microstructural inhomogeneity on thermodynamic losses in SOFC electrodes: a large dataset study *Tomasz Aleksander Prokop, Szymon Buchaniec, Janusz Szmvd. Grzegorz Brus	A mass and energy conserving boundary treatment for hybrid Lattice-Boltzmann/Finite-Volume simulations *lason Tsetoglou, Denis Ricot, Song Zhao, Eric Serre, Pierre Boivin	Optimization of air conditioning system of railway coach *Ritu Raj, Naveen Kumar Chahel, Nobuyuki Oshima, Rahul Bale
12:10-12:30	Transient critical heat flux prediction model coupling two-dimensional numerical thermal conductivity considering bubble stochastic characteristic *Xinyan Xu, Shuwen Yu, Changhong Peng	Numerical analysis for the design of an experimental study on gas hydrogen leakage in a hydrogen equipment room *Hyeonseok Seo, Hong-Cheol Shin, Hee-La Jang, Inju Hwang	Estimation of transport coefficients for water-air mixtures using the Chapman-Enskog method *Makoto Sugimoto, Yosuke Kishimoto, Honatsu Sorai, Manabu Tanaka, Takayuki Watanabe, Masaya Shigeta	Field inversion based RANS model for improved prediction of highly-loaded turbine blade *Xiao Yan, Xinrong Su, Xin Yuan

12:40-13:00 Room A: Closing